SHC-1/p52Shc targets the insulin/IGF-1 and JNK signaling pathways to modulate life span and stress response in C. elegans.

نویسندگان

  • Elke Neumann-Haefelin
  • Wenjing Qi
  • Elisabeth Finkbeiner
  • Gerd Walz
  • Ralf Baumeister
  • Maren Hertweck
چکیده

Correlative evidence links stress, accumulation of oxidative cellular damage, and aging in several species. Genetic studies in species ranging from yeast to mammals revealed several pathways regulating stress response and life span, including caloric intake, mitochondrial respiration, insulin/IGF-1 (IIS), and JNK (c-Jun N-terminal kinase) signaling. How IIS and JNK signaling cross-talk to defend against diverse stressors contributing to aging is of critical importance but, so far, only poorly understood. In this study, we demonstrate that the adaptor protein SHC-1, the Caenorhabditis elegans homolog of human p52Shc, coordinates mechanisms of stress response and aging. Using genetic and biochemical approaches, we discover that SHC-1 not only opposes IIS but also activates JNK signaling. Loss of shc-1 function results in accelerated aging and enhanced sensitivity to heat, oxidative stress, and heavy metals, whereas expression of human p52Shc rescues the shc-1 mutant phenotype. SHC-1 acts upstream of the insulin/IGF receptor DAF-2 and the PI3 kinase AGE-1 and directly interacts with DAF-2. Moreover, SHC-1 activates JNK signaling by binding to MEK-1 kinase. Both aspects converge on controlling the nuclear translocation and activation of the FOXO transcription factor DAF-16. Our findings establish C. elegans SHC-1 as a critical scaffold that directly cross-connects the two parallel JNK and IIS pathways and help to explain how these signaling cascades cooperate to ascertain normal stress response and life span in C. elegans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C. elegans VANG-1 Modulates Life Span via Insulin/IGF-1-Like Signaling

The planar cell polarity (PCP) pathway is highly conserved from Drosophila to humans and a PCP-like pathway has recently been described in the nematode Caenorhabditis elegans. The developmental function of this pathway is to coordinate the orientation of cells or structures within the plane of an epithelium or to organize cell-cell intercalation required for correct morphogenesis. Here, we desc...

متن کامل

Worming to Complete the Insulin/IGF-1 Signaling Cascade: A Dissertation

The C. elegans insulin/IGF-1 signaling (IIS) cascade plays a central role in the regulation of lifespan, dauer diapause, metabolism and stress response. The major regulatory control of IIS is through phosphorylation of its components by serine/threonine-specific protein kinases. In an RNAi screen for serine/threonine protein phosphatases that counteract the effect of the kinases in the IIS path...

متن کامل

JNK Extends Life Span and Limits Growth by Antagonizing Cellular and Organism-Wide Responses to Insulin Signaling

Aging of a eukaryotic organism is affected by its nutrition state and by its ability to prevent or repair oxidative damage. Consequently, signal transduction systems that control metabolism and oxidative stress responses influence life span. When nutrients are abundant, the insulin/IGF signaling (IIS) pathway promotes growth and energy storage but shortens life span. The transcription factor Fo...

متن کامل

TGF-ß Sma/Mab Signaling Mutations Uncouple Reproductive Aging from Somatic Aging

Female reproductive cessation is one of the earliest age-related declines humans experience, occurring in mid-adulthood. Similarly, Caenorhabditis elegans' reproductive span is short relative to its total life span, with reproduction ceasing about a third into its 15-20 day adulthood. All of the known mutations and treatments that extend C. elegans' reproductive period also regulate longevity, ...

متن کامل

Distinct activities of the germline and somatic reproductive tissues in the regulation of Caenorhabditis elegans' longevity.

The two parts of the Caenorhabditis elegans reproductive system, the germ cells and the somatic reproductive tissues, each influence the life span of the animal. Removing the germ cells increases longevity, and this life span extension requires the somatic gonad. Here we show that the somatic gonad and the germ cells make distinct contributions to life span determination. The life span increase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 22 19  شماره 

صفحات  -

تاریخ انتشار 2008